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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RIClS} in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a parlaaershlp with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion. Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tionad sources ofexperllse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an4 education programs, while other research

organizations are involved via the "gateway" concepL

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS. workingjointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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Introduction

This report consists of two papers, written approximately ten months apart.

The first is an exploration of the use of neural network techniques to improve the

effectiveness of retrieval in software repositories. The second relates a series of

experiments conducted to evaluate the feasibility of using adaptive neural net-

works as a means of deriving (or more specifically, learning) measures on soft-

ware.

Taken together, these two efforts illuminate a very promising mechanism sup-

porting software infrastructures - one based upon a flexible and responsive tech-

nology.
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Overview. A significant hurdle confronts the software reuser attempting to se-

lect candidate components from a software repository - discriminating between

those components without resorting to inspection of the implementation(s). We

outline an approach to this problem based upon neural networks which avoids

requiring the repository administrators to define a conceptual closeness graph for

the classification vocabulary.

1 Introduction

Reuse has long been an accepted principle in many scientific disciplines. Biologists

use established laboratory instruments to record experimental results; chemists use

standardized measuring devices. Engineers design based upon the availability of

components that facilitate product development. It is unreasonable to expect an

electrical engineer to design and develop the transistor from first principles every

time one is required.

Software engineers, however, are frequently guilty of a comparable practice

in their discipline. The reasons for this are as varied as the environments in which

software is developed, but they usually include the following:

*To appear in Neural Ne|_ork._ and Pa_ern Recognition in Human Computer InLerfaces, R.
Beale and :J. Findlay (eds.), Ellis Horwood Ltd., West Sussex, UK, due out March, 1992.



* a lack of developmentstandards;

• the not invented here syndrome;

• poor programming language support for the mechanical act of reuse; and

• poor support in identifying, cataloging, and retrieving reuse candidates.

The first three items involve organization mentality, and will not be ad-

dressed here. 1 We instead focus upon the final item in this list, the nature of the

repository itself, and more specifically upon the mechanisms provided for classifi-

cation and retrieval of components from the repository.

The complexity of non-trivial software components and their supporting

documentation easily qualifies reuse as a "wicked" problem - frequently intractable

in both description and solution. We describe an approach that we are currently

exploring for making classification and retrieval mechanisms more efficient and
natural for the software reuser. This approach centers around the use of neural

networks in support of imprecise classification and querying.

2 The Problem

A mature software repository can contain thousands of components, each with

its own specification, interface, and typically, its own vocabulary. Consider the

signatures presented in Figures 1 and 2 for a stack of integers and a queue of

integers, respectively.

Create: ==_ Stack

Push: Stack x Integer _ Stack

Pop: Stack ==_ Stack

Top: Stack ==_ Integer

Empty: Stack ==* Boolean

Figure 1: Signature of a Stack

1Concerning language support - there are languages which readily support reuse, but they
must be available to the programmers. Consider for a moment the inertia exhibited by FOR-
TRAN and COBOL in commercial data processing. The very existence of such large bodies

of code in languages ill-suited for reuse acts as an inhibitor for the movement of organizations
towards better suited languages.
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Create: _ Queue

Enqueue: Queue x Integer:=_ Queue

Dequeue: Queue ==_Queue

Front: Queue ==_ Integer

Empty: Queue ==_ Boolean

Figure 2: Signature of A Queue

These signatures are isomorphic up to renaming, and thus exemplify what

we have come to refer to as the vocabulary problem. Software reusers implicitly

associate distinct semantics with particular names, for example, pop and enqueue.

Thus, by the choice of names, a component developer can mislead reusers as

to the semantics of components, or provide no means of discriminating between

components. Figure 3, for example, appears to be equally applicable as a signature

for both stack and queue, primarily due to the neutral nature of the names used.

Create: _ Sequence

Insert: Sequence x Integer ==_ Sequence

Remove: Sequence ===_Sequence

Current: Sequence ==_ Integer

Empty: Sequence ==_ Boolean

Figure 3: Signature of a Sequence

3 Software Classification

Retrieval mechanisms for software repositories have traditionally provided some

sort of classification structure in support of user queries. Keyword-based retrieval

is perhaps the most common of these classification structures, but keywords are

ill-suited to domains with rich structure and complex semantics. This section lays

out the principle representational problems in software classification and selected
solutions to them.



3.1 Literary Warrant

Library scientistsuse literarywarrant forthe classificationoftexts.Representative

samples drawn from the set of works generate a set of descriptiveterms, which

in turn generate a classificationof the works as a whole. The adequacy of the

classificationsystem hinges a great deal on the initialchoice of samples.

With appropriate tools,literarywarrant in software need not restrictitself

to a sample of the body of works. Rather, itcan examine each of the individual

works in turn, providing vocabularies for each of them. This may indeed be

required in repositories where the component coverage in a particular area is sparse.

3.2 Conceptual Closeness

The vocabulary of terms built up through literary warrant typically contains a

great deal of semantic overlap words whose meanings are the same, or at least

similar. For instance, two components, one implementing a stack and the other

a queue might both be characterized with the word insert, corresponding to push

and enqueue, respectively,as discussed in section2.

Synonym ambiguity is commonly resolved through the construction of a

restrictedvocabulary, tightlycontrolledby the repositoryadministrators. Repos-

itory users must learn this restrictedvocabulary, or rely upon the assistance of

consultants already familiarwith it.Itisrarelythe case,however, that the choice

isbetween two synonyms. More typicallyitisbetween words which have similar,

but distinct,meanings (e.g.,insert,push, and enqueue, as above).

3.3 Algebraic Specification

While not really a classification technique, algebraic specification techniques (e.g.,

[GH78]) partially (and unintentionally) overcome the vocabulary problem through

inclusion of behavioral axioms into the specification. The main objection to the use

of algebraic specifications in reuse is the need to actually write and comprehend

the specifications. The traditional examples in the literature rarely exceed the

complexity of the above Figures. Also, algebraic techniques poorly address issues

such as performance and concurrency.

A reposRory containing algebraic specifications depends upon the expertise

of the reusers browsing the repository; small repositories are easily understood

whereas it is unreasonable to require a reuser to cxarnine all components in a

large repository for suitability.
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3.4 Basic Faceted Classification

Basic faceted classification begins by using domain analysis (aka literary warrant)

"to derive faceted classification schemes of domain specific objects." The classifier

not only derives terms for grouping, but also identifies a vocabulary that serves

as the values that populate those groups. From the software perspective, the

groupings, or facets become a taxonomy for the software.
• t

Prmto-D1az and Freeman identified six facets: function, object, medium,

system type, functional area, and setting [PDF87]. Each software component in

the repository has a value assigned for each of these facets. The software reuser

locates software components by specifying facet values that are descriptive of

the software desired. In the event that a given user query has no matches in

the repository, the query may be relaxed by wild-carding particular facets in the

query, thereby generalizing it.

The primary drawback in this approach is the flatness and homogeneity

of the classification structure. A general-purpose reuse system might contain not

only reusable components, but also design documents, formal specifications, and

perhaps vendor product information. Basic faceted classification creates a single

tuple space for all entries, resulting in numerous facets, tuples with many "not

applicable" entries for those facets, and frequent wildcarding in user queries.

A number of reuse repository projects have incorporated faceted classifi-

cation as a retrieval mechanism (e.g., [Gue87][Atk]), but they primarily address

the vocabulary problem through a keyword control board, charged with creating

a controlled vocabulary for classification.

Gagliano, et. al. computed conceptual closeness measures to define a

semantic distance between two facet values [GOF+88]. The two principle limita-

tions to this approach are the static nature of the distance metrics and the lack

of inter-facet dependencies; each of the facets had its own closeness matrix.

3.5 Lattice-Based Faceted Classification

Eichmann and Atkins extended basic faceted classification by incorporating a

lattice as the principle structuring mechanism in the classification scheme [EA90].

As shown in Figure 4, there are two major sublattices making up the overall
lattice.



univ

Fun_tting [ l

! ! !

! ! !

! ! !

Function Object Setting

Facet tu

void

_le

Figure 4: The Type Lattice

On the left is the sublattice comprised of sets of facet values (for clarity,

shown here with only three facets), partially ordered by the subset relation. The

Facetl] vertex in the lattice represents the empty facet set, while the Facet vertex

represents the set of all facet values in the classification scheme. Each member of

the power set of all facet values falls somewhere within this sublattice.

On the right is the tuple sublattice, containing facet set components, and

partially ordered by the subtype relation [Eic89]. The vertex denotes the empty

tuple. The tuple vertex denotes the tuple containing all possible facet components,

with each component containing all the values for that facet. Adding facet values

to a component or adding a new component to a tuple instance moves the tuple

instance down through the lattice.

Queries to a repository supporting lattice-based faceted classification are

similar to those to one supporting basic faceted classification, with two important

distinctions - query tuples can mention as many or as few facets as the reuser

wishes, thereby avoiding the need for wildcarding, and classifiers can similarly

classify a given component with as many or as few facets as are needed for precise

characterization of the component.

Lattice-based faceted classification avoids conceptual closeness issues through

the specification of sets of facet values in the classification of components. If there

are a number of semantically close facet values that all characterize the compo-

nent, aU are included in the facet instance for that component. This avoids the

need to generate closeness metrics for facet values, but it also may result in reuser

confusion about just what the component does.



3.6 Towards Adaptive Classification and Retrieval

The principle failing in the methods described so far is the static nature of the

classification. Once a component has been classified, it remains unchanged until

the repository administrators see fit to change it. This is unlikely to occur unless

those same administrators closely track reuser retrieval success, and more impor-

tantly, retrieval failure - particularly in those cases where there are components

in the repository matching reuser requirements, but those components were not

identified during the query session.

Manual adjustment of closeness metrics becomes increasingly unreasonable

as the scale of the repository increases. The number of connections in the con-

ceptual graph is combinatorially explosive. The principle design goal in our work

is the creation of an adaptive query mechanism - one capable of altering its be-

havior based upon implicit user feedback. This feedback appears in two guises;

failed queries, addressed by widening the scope of the query; and reuser refusals,

cases where candidate components were presented to the reuser, but not selected

for retrieval. The lattice provides a nice structure for the former, but a different

approach is required for the latter.

4 Our Approach

We are currently designing a new retrieval mechanism using previous work de-

scribed in [EAg0] as a starting point, and employing neural networks to address

the vocabulary and refusal problems. The motivations behind using neural net-
works include:

Associative Retrieval from Noisy and Incomplete Cues: Traditional

methods for component retrieval are based on strict pattern matching meth-

ods such as unification. In other words, the query should contain exact infor-

mation about the component(s) in the repository. Since exact information

about components is usually not known, queries fail in cases where exact

matching does not occur. Associative retrieval based on neural networks

uses relaxation, retrieving components based on partial/approximate/best

matches. This is sometimes referred to as data fault tolerance and is ideally

suited for our problem domain.

Classification and Optimization by Adaptation: In approaches using

the conceptual closeness measure, the problem of defining correlations be-

tween various components and assigning a numerical correlation value rests
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upon the designer or the administrator of the repository. Designers idiosyn-

cratically arrive at these correlations and their values, which may not be

appropriate from the perspective of the software retriever/reuser. It is our

belief that the best way to arrive at these correlations and their values is for

the system to learn them in responding to user queries.

We also intend to use another adaptation strategy for optimizing the re-

trieval of similar repetitive queries. Since in most situations, reusers repeat-

edly issue similar queries, the system will adapt to these queries by weight

adjustment. The weight adjustment will settle the relaxation process quickly

in response to these repetitive queries and hence result in faster retrieval.

The effect here is similar to that of caching frequently issued queries. Note,

however, that once the system has learned that two concepts are conceptu-

ally close, we want it to remember this, irrespective of how often the reusers

inquire about it.

Massive Parallelism: The neurocomputing paradigm is characterized by

asynchronous, massively parallel, simple computations. Since neural net-

works are massively parallel, retrieval from large repositories is possible,

using the fast associative search techniques that are natural and inherent in
these networks.

5 System Architecture

In this section, we describe some of the potential neural-network architectures and

discuss their strengths and limitations in employing them for our task.

5.1 Hopfield Networks

These networks can be used as content-addressableor associativememories. Ini-

tiallythe weights in the network are set using representativesamples from all

the exemplar classes.After thisinitialization,the input pattern I ispresented to

the network. The network then iteratesand converges to a output. This output

representsthe exemplar classwhich matches the input pattern best.

Although thisnetwork has many propertiesthat are desirablefor our sys-

tem, some of the seriouslimitationsin our context include:

1. The networks have limited capacity [Lip87] and may converge to novel spu-

rious patterns.
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.

They result in unstable exemplar patterns if many bits are shared among

multiple exemplar patterns.

There are no algorithms to incrementally train these networks, i.e., to adjust

the initial weights in a manner that creates a specific alteration in subsequent

query responses. This is important for our apphcation, since we seek an

architecture capable of adapting over time to user feedback.

5.2 Supervised Learning Algorithms

Many good supervisedlearning algorithms exist, including backpropagation [RHW86],

cascade correlation and others, but they cannot be used in this context because

our problem requires an unsupervised learning algorithm. Hence, we are investi-

gating unsupervised learning architectures, such as Adaptive Resonance Theory

(ART) [Gro88].

5.3 ART

ART belongs to a class of learning architectures known as competitive learning

models [Gro88][CG88]. The competitive learning models are usually characterized

by a network consisting of two layers L1 and L2. The input pattern I is fed into

layer L1 where it is normalized. The normalized input is fed forward to layer L2

through the weighted interconnection links that forms an adaptive filter. Layer

L2 is organized as a winner-take-all network [FB82][Srigl][BSDg0]. The network

layer L2 is usually organized as a mutually inhibitory network wherein each unit in

the network inhibits every other unit in the network through a value proportional

to the strength of its activation. Layer L2 has the task of selecting the network

node am,z, receiving the maximum total input from L1. The node amaz is said to

cluster or code the input pattern I.

In the ART system the input pattern I is fed in to the lower layer L 1. This

input is normalized and is fed forward to layer L2. This results in a network node

n,_z of layer L2 being selected by virtue of it having the maximum activation

value among all the nodes in the layer. This node nm,_ represents the hypothesis

H put forth by the network about the particular classification of the input I. Now

a matching phase occurs wherein the hypothesis H and the input I are matched,

with the quality of the required match controlled by the vigilance parameter.

If the quality of match is worse than the value specified in the vigilance

parameter, a mismatch occurs and the layer L2 is reset thereby deactivating node

n,n_. The input I activates another node and the above process recurs, comparing

another hypothesis or forming a new hypothesis about the input pattern I. New



hypothesesare formed by learning new classesand recruiting new uncommitted
nodesto representtheseclasses.

Someof the properties of ART that makesit an potential choice for our

task include

1. Real-time (on-line) learning;

2. Unsupervised learning;

3. Fast adaptive search for best match as opposed to strict match; and

4. Variable error criterion which can be fine-tuned by appropriately setting the

vigilance parameter.

However, one of the limitations of ART for our particular task arises from

its inability to distinguish the queries for particular components by users, from the

component classes which form the exemplar classes. Another limitation arises from

the fact that only one exemplar class is chosen at a time which represents the best

match, rather than choosing a collection of close matches for reuser consideration.

Our proposed system will operate in two phases. The first, loading phase

populates the repository with components. The second, retrieval phase identi-

fies candidate components in response to user queries. The distinguishing factor

between the two phases is the value of the vigilance parameter. In the loading

phase, the system will employ a high vigilance value. This ensures the forma-

tion of separate categories for each of the components in the repository. In the

retrieval phase, the system will employ a low vigilance value, thereby retrieving

components that best match the query.

We also intend to modify the winner-take-all network layer of the ART to

choose k winners instead of one. This is extremely useful in our context because

there may be multiple software components which meet the user specifications.

The software tenser may select a subset rn _< k of these components based upon

requirements. The system should associate these m components with the user

query and retrieve them for subsequent queries having similar input specifications.

This can be achieved by associating small initial weights on the lateral links of the

winner-take-all network and modifying them appropriately based on user feedback

(i.e., reuser refusals).

10



6 Discussion

6.1 Our Placement in the User-Based Framework

Discussions in the workshop placed our work in the region of user intention / no

feedback in the user-based framework. Upon further reflection, we have slightly

altered our perspective. While this placement is certainly proper in the strict

context of a single user query, it is not accurate in the broader context of a

community of users accessing the repository over time.

As the system is rewarded for providing true hits to users and punished for

providing false hits, there is a consensual drift, providing feedback for subsequent

user queries. Thus, viewing the amortized effect of user behavior, rather than the

immediate effect of user behavior, our system shifts down towards passive obser-

vation and left towards immediate feedback. 2 The net result is that our system

occupies two distinct points in the framework, one for the semantics involved in

the immediate query query and one for the semantics involved in the aggregate

behavior of the repository over time.

6.2 The Relationship to Gestural Recognition

Beale [BE], Rubine [Rub], and Zhao [Zha], the other occupants of the Novel Input

category of the task-based framework, respectively address sign language recogni-

tion, drawing geometric figures, and diagram editing - all interpreting imprecise

human gestures and mapping them to a precise application domain. They all

address the inability of humans to accurately repeat physical movement.

Our mechanism, on the other hand, accepts a precisely phrased user query

and adapts it to an imprecise apphcation domain. Ignoring the issue of poor

typing skills, our user community can accurately repeat a given user intention

(query) any number of times, and we know exactly what that intention is. The

chaUenge in our domain occurs when that intention has no exact match in the

system. It's similar to Rubine's system offering to draw a square or a hexagram

(or perhaps even a five-sided star) when the user gestured a pentagram, but the

system had no training in pentagram gestures.

2or more precisely, non-immediate feedback.

11



6.3 Directions for Future Research

Options available to us at this point in our work lie in two general directions,

further extending repository semantics and exploring the application of neural

networks to these types of application domains.

With respect to the former, the classification scheme described here is

restricted to facets and tuples containing facets. In other work, the classification

scheme was first extended to include signatures for abstract data types [Eic91a]

and then further extended to support axioms in a second phase in the query

process [Eic91b]. A merger of that work with that described here has appeal -

particularly the imprecise matching of signatures.

With respect to the latter, we are interested in studying the tradeoffs

between individual user adaptation versus the consensual adaptation described

above. These two actually are the extremes in a continuum of user groupings.

This coupled with an additional dimension of user expertise forms a state space of

user behavior where the system might more heavily weight certain semantic con-

nections for experts and other semantic connections for novices. This will require

the development of new algorithms for relaxation.

7 Conclusions

Our approach extends previous work in component retrieval by incrementally

adapting the conceptual closeness weights based upon actual use, rather than an

administrator's assumptions. Neural networks provide a quite suitable framework

for supporting this adaptation. Reuse repository retrieval provides a unique and

challenging application domain for neural networking techniques.

This approach effectively adds an additional dimension to the conceptual

space formed by the type lattice. This additional dimension allows traversal from

one vertex to another using the adapted closeness weights derived from user ac-

tivity, rather than the partial orders used in defining the lattice. The resulting

retrieval mechanism supports both well-defined lattice-constrained queries and

ill-defined neural-network constrained queries in the same framework.
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Abstract

Software metrics provide an effective method for characterizing

software. Metrics have traditionally been composed through the def-

inition of an equation. This approach is limited by the fact that all the

interrelationships among all the parameters be fully understood.

This paper explores an alternative, neural network approach to mod-

eling metrics. Experiments performed on two widely accepted met-

rics, McCabe and I-Ialstead, indicate that the approach is sound, thus

serving as the groundwork for further exploration into the analysis

and design of software metrics.



1 - Introduction

As software engineering matures into a true engineering discipline, there is an increasing need

for a corresponding maturity in repeatability, assessment, and measurement-- of both the process-

es and the artifacts associated with software. Repeatability of artifact takes natural form in the no-

tion of software reuse, whether of code or of some other artifact resulting from a development or

maintenance process.

Accurate assessment of a component's quality and reusability are critical to a successful reuse

effort. Components must be easily comprehendible, easily incorporated into new systems, and be-

have as anticipated in those new systems. Unfortunately, no consensus currendy exists on how to

go about measuring a component's reusability. One reason for this is our less than complete under-

standing of software reuse, yet obviously it is useful to measure something that is not completely

understood. '

This paper describes a preliminary set of experiments to determine whether neural networks

can model known software metrics. If they can, then neural networks can also serve as a tool to

create new metrics. Establishing a set of measures raises questions of coverage (whether the metric

covers all features), weightings of the measures, accuracy of the measures, and applicability over

various application domains. The appeal of a neural approach lies in a neural network's ability to

model a function without the need to have knowledge of that function, thereby providing an oppor-

tunity to provide an assessment in some form, even if it is as simple as this component is reusable,

and that component is not.

We begin in section 2 by describing two of the more widely accepted software metrics and then

in section 3 briefly discuss various neural network architectures and their applicability. Section 4

presents the actual experiment. We draw conclusions in section 5, and present prospects for future

work in section 6.



2 - Software metrics

There are currently many different metrics for assessing software. Metrics may focus on lines

of code, complexity [7, 8], volume[5], or cohesion [2, 3] to name a few. Among the many metrics

(and their variants) that exist, the McCabe and Halstead metrics are probably the most widely rec-

ognized.

The McCabe metric measures the number of control paths through a program [7]. Also referred

to as cyclomatic complexity, it is defined for a program G as [8]:

v(G) = number of decision statements + 1

assuming a single entry and exit for the program, or more generally as

v(G) = Edges - Nodes + 2. Units

where Edges, Nodes, and Units correspond respectively to the number of edges in the program

flow graph, the number of nodes in the program flow graph, and the number of units (procedures

and functions) in the program.

The Halstead metric measures a program's volume. There are actually several equations asso-

ciated with Halstead metrics. Each of these equations is directly or indirectly derived from the fol-

lowing measures:

nl the number of unique operators within a program (operators for this experiment in-

clude decision, math, and boolean symbols);

N 1 the total number of operators within a program;

n 2 the number of unique operands in a program (including procedure names, function

names, variables (local and global), constants and data types); and

N 2 the total number of operands in a program.

The measurements for a program are equal to the sum of the measurements for the individual mod-

ules.

Based on these four parameters, Halstead derived a set of equations, which include the follow-

2



ing (in whichwearemostinterested):

ActualLength:

ProgramVolume:

ProgramEffort:

N=N 1 +N 2

V = N. log2(n )

E =V/(2- n2)

Traditionally, software metrics are generated by extracting values from a program and substi-

tuting them into an equation. In certain instances, equations may be merged together using some

weighted average scheme. This approach works well for simple metrics, but as our models become

more sophisticated, modeling metrics with equations becomes harder. The traditional process re-

quires the developer to completely understand the relationship among all the variables in the pro-

posed metric. This demand on a designer's understanding of a problem limits metric sophistication

(i.e., complexity). For example, one reason why it is so hard to develop reuse metrics is that no one

completely understands "design for reuse" issues.

The goal then is to find alternative methods for generating software metrics. Modeling a metric

using a neural network has several advantages. The developer need only to determine the endpoints

(inputs and output) and can disregard (to an extent) the path taken. Unlike the traditional approach,

where the developer is saddled with the burden of relating terms, a neural network automatically

creates relationships among metric terms. Traditionalists might argue that you must fully under-

stand the nuances among terms, but full understanding frequently takes a long time, particularly

when there are numerous variables involved.

We establish neural networks as a method for modeling software metrics by showing that we

can model two widely accepted metrics, the McCabe and the Halstead metrics.

3 - Neural Networks

Neural networks by their very nature support modeling. In particular, there are many applica-

tions of neural network algorithms in solving classification problems, even where the classification



boundariesarenotclearlydefinedandwheremultipleboundariesexistandwedesirethebest.It

seemsonly naturalthento usea neuralnetworkin classifyingsoftware.

Thereweretwo principlecriteriadeterminingwhichneuralnetworkto use for this experiment.

First, we needed a supervised neural network, since for this experiment the answers are known.

Second, the network needed to be able to classify.

The back-propagation algorithm meets both of these criteria [9]. It works by calculating a par-

tial first derivative of the overall error with respect to each weight. The back-propagation ends up

taking infinitesimal steps down the gradient [4]. However, a major problem with the back-propa-

gation algorithm is that it is exceedingly slow to converge [7]. Fahlman developed the quickprop

algorithm as a way of using the higher-order derivatives in order to take advantage of the curvature

[4]. The quickprop algorithm uses second order derivatives in a fashion similar to Newton's meth-

od. From previous experiments we found the quickprop algorithm to clearly outperform a standard

back-propagation neural network.

While an argument could be made for employing other types of neural models, due to the linear

nature of several metrics, we chose quickprop to ensure stability and continuity in our experiments

when we moved to more complex domains in future work.

4 - Modeling Metrics with Neural Networks

As mentioned earlier, the goal of the experiment is to determine whether a neural network

could be used as a tool to generate a software metric. In order to determine whether this is possible,

the first step is to determine whether a neural network can model existing metrics, in this case Mc-

Cabe and Halstead. These two were chosen not from a belief that they are particularly good mea-

sures, but rather because they are widely accepted, public domain programs exist to generate the

metric values, and the fact that the McCabe and Halstead metrics are representative of major metric

domains (complexity and volume, respectively).



Sinceour longterm goalof theexperimentis to determinewhethera neuralnetworkcanbe

usedto modelsoftwarereusabilitymetrics,Ada,with its supportfor reuse(generics,unconstrained

arrays,etc.)seemedareasonablechoicefor ourdomainlanguage.Furthermore,theamplesupply

of publicdomainAdasoftwareavailablefrom repositories(e.g.,[1]) providesarich testbedfrom

which to drawprogramsfor analysis.

Finally,programsfrom severaldistinctapplicationdomains(e.g.,abstractdatatypes,program

editors,numericutilities, systemorientedprograms,etc.)wereincludedin thetestsuiteto ensure

variety.

Weran threedistinctexperiments.Thefirst experimentmodeledtheMcCabemetriconsingle

procedures,effectively fLxingtheunit variableat 1.Thesecondexperimentextendedthefirst to

thefull McCabemetric,includingtheunit countin theinputvector,andusingcompletepackages

astestdata.Thethird experimentusedthesametestdatain modelingtheHalsteadmetric,but a

differentsetof trainingvectors.

4.1 - Experiment A: A Neural McCabe metric for Procedures

In this experiment all vectors had a unit value of one, so the unit column was omitted. In build-

ing both the training and test sets all duplicate vectors and stub vectors (i.e., statements of the form

"PROCEDURE XYZ IS SEPARATE") were removed. The input for all trials in this experiment

contained 26 training vectors and 8 test vectors (the sets were disjoint). Each training vector cor-

responded to an Ada procedure and contained three numbers, the number of edges, the number of

nodes, and the cyclomatic complexity value.

The goals of this first experiment were to establish whether a neural network can be used to

model a very simple metric function (the McCabe metric on a procedure basis) and to examine the

influence neural network architecture has on the results. The input ran under 6 different architec-

tures: 2-1 (two input layers, no hidden layers, and one output layer), 2-1-1 (two input layers, one
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Figure 1: McCabe Results for Single Procedures

hidden layer, and one output layer), 2-2-1, 2-3-1, 2-4-1, and 2-2-2-1. In order to examine the impact

of architecture, other parameters remained constant. Alpha, the learning rate, was set to 0.55

throughout the trials. An asymsigmoid squashing function (with a range of 0 to +1) was used to

measure error. Finally, each trial was examined during epochs 1000, 5000, and 25,000. Figure 1

presents the results of these trials. In the graph, the neural calculated values are plotted against the

actual values for the metric at 25,000 epochs*. In an ideal situation, all lines would converge to x

= y, indicating an exact match between the actual McCabe metric (calculated using the traditional

equation) on the x-axis, and the neural calculated McCabe metric on the y-axis.

This experiment provides good results considering the minimal architectures used. Most points

tend to cluster towards the actual-calculated line regardless of architecture selection. This suggests

that more complex architectures would not provide dramatic improvements in the results.

Considering that only 26 training vectors were used, the results were quite favorable, and we

moved on to the next experiment.

In fact, all figures in the paper correspond to the results following 25,000 epochs.
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4.2 - Experiment B: A Neural McCabe Metric for Packages

The Second experiment modeled the McCabe metrics on a package body basis. Changes in data

involved the addition of another input column corresponding to the number of units (the number

of procedures in an Ada package) and the selection of a slightly different set of training vectors,

chosen to ensure coverage of the added input dimension.

The experiment ranged over five different architectures (3-3-1, 3-5-1, 3-10-1, 3-5-5-1, and

3+5-5-1 (hidden layers are connected to all previous layers)) and four training sets (16, 32, 48, and

64 vectors). Each smaller training set is a subset of the larger training set, and training and test sets

were always disjoint. Alpha remained constant at 0.55 throughout the trials. Once again, we used

an asymsigmoid squashing function in every trial. Data was gathered at epochs 1000, 5000, and

25,000.

We selected vectors for the test suite to ensure variety both in the number of units in the pro-

gram and in the nature of the program (number crunching programs tend to provide higher cyclo-

matic complexity values than I/O-bound programs). For a given package body, its cyclomatic

complexity is equal to the sum of the cyclomatic complexities for all its procedures.

Some packages contained stub procedures. These stub procedures generate an edge value of

zero and a node value of one and thus produce a cyclomatic complexity of 1. Stub procedures did

not seem to adversely affect the training set.

The four figures below depict the results first when neural network architectures remain con-

stant and training set size varies and second when training set size remains constant and neural net-

work architectures vary.

As the training set increases, the results converge towards the x = y line, indicating a strong

correspondence to the actual McCabe metric. This behavior occurs in all architectures; we show

the 3-3-1 architecture in Figure 2, and the 3+5-5-1 architecture in Figure 3. Except for the initial
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improvement after 16 vectors, there is no significant improvement of results in the other three tri-

als. This suggests that relatively low numbers of training vectors are required for good peffor-

mance.

Furthermore, as shown in Figure 4 for 16 training vectors and Figure 5 for 64 training vectors,

network architecture had virtually no effect on the results. These strong results are not surprising,

given the linear nature of the McCabe metric.
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4.3 - Experiment C: A Neural Halstead Metric for Packages

Based upon the results of the fhst two experiments, we assumed for this experiment that if the

experiment worked for packages, then it also worked for procedures, and further, that the increas-

ing the number of training set vectors improves upon the results. Therefore, the focus of this ex-

periment was on varying neural network architectures over a fixed-size training set.

9
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The experiment ranged over seven different neural network architectures broken into three

groups: broad, shallow architectures (4-5-3, 4-7-3, and 4-10-3), narrow, deep architectures (4-7-7-

3 and 4-7-7-7-3), and narrow, deep architectures with hidden layers that connected to all previous

layers (4+7-7-3 and 4+7+7-7-3). We formed these three groups in order to discover whether there

was any connection between the complexity of an architecture and its ability to model a metric.

Figures 6, 7, and 8 present the results for the Halstead volume for broad, deep, and connected
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architectures, respectively. Note that both the broad and deep architectures do moderately well at

matching the actual Halstead volume metric, but the connected architecture performs significantly

better. Furthermore, there is no significant advantage for a five versus four layer connected archi-

tecture, indicating that connecting multiple layers may be a sufficient condition for adequately

modeling the metric.

This pattern of performance also held for the Halstead length metric and the Halstead effort

metric, so we show only the results for the connected architecture in Figure 9 and Figure 10, re-

spectively.

5 - Conclusions

The experimental results clearly indicate that a neural network approach for modeling metrics

is feasible. In all experiments the results corresponded well with the actual values calculated by

traditional methods. Both the data set and the neural network architecture reached performance sat-

uration points in the McCabe metric. In the Halstead experiment, the fact that the results oscillated

over the actual-calculated line indicate that the neural network was attempting to model the desired

values. Adding more training vectors, especially ones containing larger values, would smooth out
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6 - Future work

Applying this work to other existing metrics is an obvious extension, but we feel that the de-

velopment of new metrics by applying neural approaches is much more significant. In particular,

expanding this work to the development of a reusability metric offers great promise. Effective re-
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useis only possiblewith effectiveassessmentandclassification.Sincenoeasyalgorithmicsolu-

tionscurrentlyexist,we've turnedto neuralnetworksto supportthederivationof reusability

metrics.Unsupervisedlearningprovidesinterestingpossibilitiesfor this domain,letting thealgo-

rithm createits ownclustersandavoidingtheneedfor significanthumanintervention.

Coverageandaccuracyareimportantaspectsof developinga neuralnetworkto modelasoft-

warereusemetric.McCabeandHalsteadmetricsareinterestinganduseful,but theydonotprovide

coverageregardingreusability.We needto expandthenumberof parametersin thedatasetin or-

der to provideadequatecoverage with respect to reusability of a component. We also would like

to improve the accuracy of answers by enlarging our data sets to include possibly hundreds of train-

ing set vectors. This will need to be a requirement when exploring more complex metric scenarios,

and the cost of such extended training is easily borne over the expected usage of the metric.

Finally, it is possible to explore alternative neural network models. For example, the cascade

correlation model [5] dynamically builds the neural network architecture, automating much of the

process described here.
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